题目内容

A在随机森林的单个树中,树和树之间是有依赖的,而GradientBoostingTrees中的单个树之间是没有依赖的.
B这两个模型都使用随机特征子集,来生成许多单个的树.
C我们可以并行地生成GradientBoostingTrees单个树,因为它们之间是没有依赖的,GradientBoostingTrees训练模型的表现总是比随机森林好

查看答案
更多问题

A准确度并不适合衡量不平衡类别问题
B准确度适合衡量不平衡类别问题
C精确度和召回率适合于衡量不平衡类别问题
D精确度和召回率不适合衡量不平衡类别问题

A增加神经网络层数,可能会增加测试数据集的分类错误率
B减少神经网络层数,总是能减小测试数据集的分类错误率
C增加神经网络层数,总是能减小训练数据集的分类错误率

A大于4年
B大于或等于4年
C大于或等于C年
D大千或等于5年

A标准序号
B标准代号
C模块序号
D板块序号

答案查题题库