题目内容

ASVM是这样一个分类器,他寻找具有最小边缘的超平面,因此它也经常被称为最小边缘分类器(minimalmarginclassifier)
B在聚类分析中,簇内的相似性越大,簇间的差别越大,聚类的效果越好
C在决策树中,随着树中节点变得太大,即使模型的训练误差还在继续减低,但是检验误差开始增大,这是出现了模型拟合不足的问题
D聚类分析可以看做是一种非监督的分类

查看答案
更多问题

A我们必须在使用PCA前规范化数据
B我们应该选择使得模型有最大variance的主成分
C我们应该选择使得模型有最小variance的主成分
D我们可以使用PCA在低纬度上做数据可视化

A在随机森林的单个树中,树和树之间是有依赖的,而GradientBoostingTrees中的单个树之间是没有依赖的.
B这两个模型都使用随机特征子集,来生成许多单个的树.
C我们可以并行地生成GradientBoostingTrees单个树,因为它们之间是没有依赖的,GradientBoostingTrees训练模型的表现总是比随机森林好

A准确度并不适合衡量不平衡类别问题
B准确度适合衡量不平衡类别问题
C精确度和召回率适合于衡量不平衡类别问题
D精确度和召回率不适合衡量不平衡类别问题

A增加神经网络层数,可能会增加测试数据集的分类错误率
B减少神经网络层数,总是能减小测试数据集的分类错误率
C增加神经网络层数,总是能减小训练数据集的分类错误率

答案查题题库