from sklearn.decomposition import PCAtrainset= XXXXXXXXXXXXXXXXXX # 获取样本pca= PCA(n_components=20)______________________(trainset)# 根据样本trainset计算特征投影变换reduced=__________________________(trainset)# 将待处理样本trainset投影到低维空间中recovered=__________________________(reduced) # 将变换到低维特征空间中的样本反变换回原始维度空间其中,reduced中每个降维后的样本的维度大小为__________
查看答案
import numpy as np,根据某列表list1生成python数组(矩阵)的语句为arr1=__________
arr1 = np.array([[1,2],[3,4]])arr2=arr1**3则arr2中的元素按照从左到右、从上到下的顺序,依次为_______、________、________、________
arr1 = np.array([[3,1],[2,5]])arr2 = np.array([[1,2],[3,4]])arr3=arr1*arr2则arr3中的元素按照从左到右、从上到下的顺序依次为_______、_______、_______、_______、
arr1 = np.array([[3,1],[2,5]])arr2 = np.array([[1,2],[3,4]])arr3=np.dot(arr1, arr2.T )则arr3中的元素按照从左到右、从上到下的顺序依次为_______、_______、_______、_______、