设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b—2,a+2b)T,β=(1,3,-3)T,试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)β可由α1,α2,α3唯一地线性表示,并求出表示式; (3)β可由α1,α2,α3线性表示,但表示式不唯一.
查看答案
设函数f(x)定义在[-α,α]上,证明: (1)F(x)=f(x)+f(-x),x∈[-α,α]为偶函数; (2)G(x)=f(x)-f(-x),x∈[-α,α]为奇函数; (3)f可表示为某个奇函数与某个偶函数之和。
听力原文: I just wanted to say well done for getting that contract. You did a great job and we know it wasn’t easy. What would you say to a celebratory meal? I know a very good restaurant near here. I’m sure we could get a table for lunch if you’re free.
—You will hear five recordings.
—For each recording, decide what the main reason is for the phone call.
—Write one letter (A—H) next to the number of the recording.
—Do not use any letter more than once.
—After you have listened once, replay each recording.
A booking a table
B cancelling a meeting
C placing an order
D selling something
E offering a lift
F congratulating someone
G checking an address
H making an appointment
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t). (1)问当t为何值时,向量组α1,α2,α3线性无关? (2)问当t为何值时,向量组α1,α2,α3线性相关? (3)当α1,α2,α3线性相关时,将α3表示为α1和α2的线性组合.